Ephraim Tsalik, MD, PhD

Associate Professor of Medicine
Associate Professor in the Department of Molecular Genetics and Microbiology
Member of Duke Center for Applied Genomics and Precision Medicine
Campus mail Box 102359 DUMC, Durham, NC 27710
Phone (919) 684-3114
Email address e.t@duke.edu

My research is focused on understanding the dynamic between host and pathogen so as to discover and develop host-response markers that can diagnose and predict health and disease.  This new and evolving approach to diagnosing illness has the potential to significantly impact individual as well as public health considering the rise of antibiotic resistance.

With any potential infectious disease diagnosis, it is difficult, if not impossible, to determine at the time of presentation what the underlying cause of illness is.  For example, acute respiratory illness is among the most frequent reasons for patients to seek care. These symptoms, such as cough, sore throat, and fever may be due to a bacterial infection, viral infection, both, or a non-infectious condition such as asthma or allergies.  Given the difficulties in making the diagnosis, most patients are inappropriately given antibacterials.  However, each of these etiologies (bacteria, virus, or something else entirely) leaves a fingerprint embedded in the host’s response. We are very interested in finding those fingerprints and exploiting them to generate new approaches to understand, diagnose, and manage disease.

These principles also apply to sepsis, defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Just as with acute respiratory illness, it is often difficult to identify whether infection is responsible for a patient’s critical illness.  We have embarked on a number of research programs that aim to better identify sepsis; define sepsis subtypes that can be used to guide future clinical research; and to better predict sepsis outcomes.  These efforts have focused on many systems biology modalities including transcriptomics, miRNA, metabolomics, and proteomics.  Consequently, our Data Science team has utilized these highly complex data to develop new statistical methods, furthering both the clinical and statistical research communities.

Synergy between multi-disciplinary experts is crucial to tackle the threats posed by infectious diseases and the rise in antimicrobial resistance. We have successfully assembled a team of clinical scientists, data scientists, laboratorians, clinical research coordinators, among many others. Potential collaborators are encouraged to contact us.

These examples are just a small sampling of the breadth of research Dr. Tsalik and his colleagues conduct.  Please visit https://precisionmedicine.duke.edu/ for more details.

Education and Training

  • Fellowship in Infectious Diseases, Medicine, Duke University School of Medicine, 2008 - 2011
  • Residency, Medicine, Duke University School of Medicine, 2005 - 2008
  • M.D., Columbia University College of Physicians and Surgeons, 2005
  • Ph.D., Columbia University College of Physicians and Surgeons, 2003

Publications

Tsalik, E. L., D. Jones, B. Nicholson, L. B. Caram, O. Liesenfeld, V. G. Fowler, S. W. Glickman, et al. “DETECTION OF BACTERIAL AND FUNGAL PATHOGENS ASSOCIATED WITH SEPSIS IN PATIENTS PRESENTING TO THE EMERGENCY ROOM.” Intensive Care Medicine 35 (September 1, 2009): 196–196.

Scholars@Duke

Tsalik, Ephraim L., and Christopher W. Woods. “Sepsis redefined: the search for surrogate markers..” Int J Antimicrob Agents 34 Suppl 4 (2009): S16–20. https://doi.org/10.1016/S0924-8579(09)70560-6.

PMID
19931810
Full Text

Tsalik, Ephraim L., Timothy Niacaris, Adam S. Wenick, Kelvin Pau, Leon Avery, and Oliver Hobert. “LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system..” Dev Biol 263, no. 1 (November 1, 2003): 81–102. https://doi.org/10.1016/s0012-1606(03)00447-0.

PMID
14568548
Full Text

Tsalik, Ephraim L., and Oliver Hobert. “Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans..” J Neurobiol 56, no. 2 (August 2003): 178–97. https://doi.org/10.1002/neu.10245.

PMID
12838583
Full Text

Altun-Gultekin, Z., Y. Andachi, E. L. Tsalik, D. Pilgrim, Y. Kohara, and O. Hobert. “A regulatory cascade of three homeobox genes, ceh-10, ttx-3 and ceh-23, controls cell fate specification of a defined interneuron class in C. elegans..” Development 128, no. 11 (June 2001): 1951–69.

PMID
11493519
Scholars@Duke

Tsalik, E. L., and M. R. Gartenberg. “Curing Saccharomyces cerevisiae of the 2 micron plasmid by targeted DNA damage..” Yeast 14, no. 9 (June 30, 1998): 847–52. https://doi.org/10.1002/(SICI)1097-0061(19980630)14:9<847::AID-YEA285>3.0.CO;2-9.

PMID
9818722
Full Text

Pages